0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOxo-iron(V) species have been implicated in the catalytic cycle of the Rieske dioxygenase. Their synthetic analog, [FeV(O)(OC(O)CH3)(PyNMe3)]2+ (1, PyNMe3 = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-trimethyl), derived from the O–O bond cleavage of its acetylperoxo iron(III) precursor, has been shown experimentally to perform regio- and stereoselective C–H and C═C bond functionalization. However, its structure–activity relation is poorly understood. Herein we present a detailed electronic-structure and spectroscopic analysis of complex 1 along with well-characterized oxo-iron(V) complexes, [FeV(O)(TAML)]− (2, TAML = tetraamido macrocyclic ligand), [FeV(O)(TMC)(NC(O)CH3)]+ (4, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and [FeV(O)(TMC)(NC(OH)CH3)]2+ (4-H+), using wave function-based multireference complete active-space self-consistent field calculations. Our results reveal that the x/y anisotropy of the 57Fe A-matrix is not a reliable spectroscopic marker to identify oxo-iron(V) species and that the drastically different Ax and Ay values determined for complexes 1, 4, and 4-H+ have distinctive origins compared to complex 2, a genuine oxo-iron(V) species. Complex 1, in fact, has a dominant character of [FeIV(O···OC(O)CH3)2–•]2+, i.e., an SFe = 1 iron(IV) center antiferromagnetically coupled to an O–O σ* radical, where the O–O bond has not been completely broken. Complex 4 is best described as a triplet ferryl unit that strongly interacts with the trans acetylimidyl radical in an antiferromagnetic fashion, [FeIV(O)(•N═C(O–)CH3)]+. Complex 4-H+ features a similar electronic structure, [FeIV(O)(•N═C(OH)CH3)]2+. Owing to the remaining approximate half σ-bond in the O–O moiety, complex 1 can arrange two electron-accepting orbitals (α σ*O–O and β Fe-dxz) in such a way that both orbitals can simultaneously interact with the doubly occupied electron-donating orbitals (σC–H or πC–C). Hence, complex 1 can promote a concerted yet asynchronous two-electron oxidation of the C–H and C═C bonds, which nicely explains the stereospecificity observed for complex 1 and the related species.
Bhaskar Mondal, Frank Neese, Eckhard Bill, Shengfa Ye (2018). Electronic Structure Contributions of Non-Heme Oxo-Iron(V) Complexes to the Reactivity. Journal of the American Chemical Society, 140(30), pp. 9531-9544, DOI: 10.1021/jacs.8b04275.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of the American Chemical Society
DOI
10.1021/jacs.8b04275
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access