RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Electronic structure and spectroscopy of “superoxidized” iron centers in model systems: theoretical and experimental trends

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2008

Electronic structure and spectroscopy of “superoxidized” iron centers in model systems: theoretical and experimental trends

0 Datasets

0 Files

English
2008
Physical Chemistry Chemical Physics
Vol 10 (30)
DOI: 10.1039/b801803k

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
John F. Berry
Serena DeBeer
Frank Neese

Abstract

Recent advances in synthetic chemistry have led to the discovery of "superoxidized" iron centers with valencies Fe(V) and Fe(VI) [K. Meyer et al., J. Am. Chem. Soc., 1999, 121, 4859–4876; J. F. Berry et al., Science, 2006, 312, 1937–1941; F. T. de Oliveira et al., Science, 2007, 315, 835–838.]. Furthermore, in recent years a number of high-valent Fe(IV) species have been found as reaction intermediates in metalloenzymes and have also been characterized in model systems [C. Krebs et al., Acc. Chem. Res., 2007, 40, 484–492; L. Que, Jr, Acc. Chem. Res., 2007, 40, 493–500.]. These species are almost invariably stabilized by a highly basic ligand Xn− which is either O2− or N3−. The differences in structure and bonding between oxo- and nitrido species as a function of oxidation state and their consequences on the observable spectroscopic properties have never been carefully assessed. Hence, fundamental differences between high-valent iron complexes having either FeO or FeN multiple bonds have been probed computationally in this work in a series of hypothetical trans-[FeO(NH3)4OH]+/2+/3+ (1–3) and trans-[FeN(NH3)4OH]0/+/2+ (4–6) complexes. All computational properties are permeated by the intrinsically more covalent character of the FeN multiple bond as compared to the FeO bond. This difference is likely due to differences in Z* between N and O that allow for better orbital overlap to occur in the case of the FeN multiple bond. Spin-state energetics were addressed using elaborate multireference ab initio computations that show that all species 1–6 have an intrinsic preference for the low-spin state, except in the case of 1 in which S = 1 and S = 2 states are very close in energy. In addition to Mössbauer parameters, g-tensors, zero-field splitting and iron hyperfine couplings, X-ray absorption Fe K pre-edge spectra have been simulated using time-dependent DFT methods for the first time for a series of compounds spanning the high-valent states +4, +5, and +6 for iron. A remarkably good correlation of these simulated pre-edge features with experimental data on isolated high-valent intermediates has been found, allowing us to assign the main pre-edge features to excitations into the empty Fedz2 orbital, which is able to mix with Fe 4pz, allowing an efficient mechanism for the intensification of pre-edge features.

How to cite this publication

John F. Berry, Serena DeBeer, Frank Neese (2008). Electronic structure and spectroscopy of “superoxidized” iron centers in model systems: theoretical and experimental trends. Physical Chemistry Chemical Physics, 10(30), pp. 4361-4361, DOI: 10.1039/b801803k.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2008

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Physical Chemistry Chemical Physics

DOI

10.1039/b801803k

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access