0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis perspective discusses the principles of the multistate scenario often encountered in transition metal catalyzed reactions, and is organized as follows. First, several important theoretical concepts (physical versus formal oxidation states, orbital interactions, use of (spin) natural and corresponding orbitals, exchange enhanced reactivity and the connection between valence bond and molecular orbital based electronic structure analysis) are presented. These concepts are then used to analyze the electronic structure changes occurring in the reaction of C–H bond oxidation by FeIVoxo species. The analysis reveals that the energy separation and the overlap between the electron donating orbitals and electron accepting orbitals of the FeIVoxo complexes dictate the reaction stereochemistry, and that the manner in which the exchange interaction changes depends on the identity of these orbitals. The electronic reorganization of the FeIVoxo species during the reaction is thoroughly analyzed and it is shown that the FeIVoxo reactant develops oxyl radical character, which interacts effectively with the σCH orbital of the alkane. The factors that determine the energy barrier for the reaction are discussed in terms of molecular orbital and valence bond concepts.
Shengfa Ye, Caiyun Geng, Sason Shaik, Frank Neese (2013). Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C–H bond activation by non-heme iron(iv)–oxo cores. Physical Chemistry Chemical Physics, 15(21), pp. 8017-8017, DOI: 10.1039/c3cp00080j.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Physical Chemistry Chemical Physics
DOI
10.1039/c3cp00080j
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access