0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe phenomenon of contact electrification (CE) has been known for thousands of years, but the nature of the charge carriers and their transfer mechanisms are still under debate. Here, the CE and triboelectric charging process are studied for a metal-dielectric case at different thermal conditions by using atomic force microscopy and Kelvin probe force microscopy. The charge transfer process at the nanoscale is found to follow the modified thermionic-emission model. In particular, the focus here is on the effect of a temperature difference between two contacting materials on the CE. It is revealed that hotter solids tend to receive positive triboelectric charges, while cooler solids tend to be negatively charged, which suggests that the temperature-difference-induced charge transfer can be attributed to the thermionic-emission effect, in which the electrons are thermally excited and transfer from a hotter surface to a cooler one. Further, a thermionic-emission band-structure model is proposed to describe the electron transfer between two solids at different temperatures. The findings also suggest that CE can occur between two identical materials owing to the existence of a local temperature difference arising from the nanoscale rubbing of surfaces with different curvatures/roughness.
Shiquan Lin, Liang Xu, Cheng Xu, Xiangyu Chen, Aurelia Chi Wang, Binbin Zhang, Pei Lin, Ya Yang, Huabo Zhao, Zhong Lin Wang (2019). Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric Case. , 31(17), DOI: https://doi.org/10.1002/adma.201808197.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.201808197
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access