RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2008

Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange

0 Datasets

0 Files

English
2008
Chemical Physics
Vol 356 (1-3)
DOI: 10.1016/j.chemphys.2008.10.036

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Frank Neese
Frank Wennmohs
Andreas Hansen
+1 more

Abstract

In this paper, the possibility is explored to speed up Hartree–Fock and hybrid density functional calculations by forming the Coulomb and exchange parts of the Fock matrix by different approximations. For the Coulomb part the previously introduced Split-RI-J variant (F. Neese, J. Comput. Chem. 24 (2003) 1740) of the well-known ‘density fitting’ approximation is used. The exchange part is formed by semi-numerical integration techniques that are closely related to Friesner’s pioneering pseudo-spectral approach. Our potentially linear scaling realization of this algorithm is called the ‘chain-of-spheres exchange’ (COSX). A combination of semi-numerical integration and density fitting is also proposed. Both Split-RI-J and COSX scale very well with the highest angular momentum in the basis sets. It is shown that for extended basis sets speed-ups of up to two orders of magnitude compared to traditional implementations can be obtained in this way. Total energies are reproduced with an average error of <0.3kcal/mol as determined from extended test calculations with various basis sets on a set of 26 molecules with 20–200 atoms and up to 2000 basis functions. Reaction energies agree to within 0.2kcal/mol (Hartree–Fock) or 0.05kcal/mol (hybrid DFT) with the canonical values. The COSX algorithm parallelizes with a speedup of 8.6 observed for 10 processes. Minimum energy geometries differ by less than 0.3pm in the bond distances and 0.5° in the bond angels from their canonical values. These developments enable highly efficient and accurate self-consistent field calculations including nonlocal Hartree–Fock exchange for large molecules. In combination with the RI-MP2 method and large basis sets, second-order many body perturbation energies can be obtained for medium sized molecules with unprecedented efficiency. The algorithms are implemented into the ORCA electronic structure system.

How to cite this publication

Frank Neese, Frank Wennmohs, Andreas Hansen, Ute Becker (2008). Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chemical Physics, 356(1-3), pp. 98-109, DOI: 10.1016/j.chemphys.2008.10.036.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2008

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Chemical Physics

DOI

10.1016/j.chemphys.2008.10.036

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access