RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effects of tillage on soil organic carbon and crop yield under straw return

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Effects of tillage on soil organic carbon and crop yield under straw return

0 Datasets

0 Files

English
2023
Agriculture Ecosystems & Environment
Vol 354
DOI: 10.1016/j.agee.2023.108543

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Xintan Zhang
Jie Wang
Xiangyan Feng
+5 more

Abstract

No-tillage with straw mulch is an effective way to achieve soil sustainability. However, the specific redistributions of soil organic carbon composition, stocks, and crop yield remain unclear. The hypothesis that no-tillage had a minor effect on soil organic carbon stocks in 0–50 cm but decreased crop yield compared to plow-tillage under straw return was tested in this study. Soils properties from two decades of rice-wheat rotation field experiment were related to the yield of rice and wheat depending on tillage: 1) plow-tillage without straw return, 2) no-tillage with straw mulch, and 3) plow-tillage with straw return. No-tillage with straw mulch had the highest mean weight diameter of soil aggregates, the contents of macro-aggregates (>0.25 mm) organic carbon, particulate organic carbon (>53 µm), and soil organic carbon across tillage practices in 0–5 cm. However, it decreased the contents of macro-aggregates (>0.25 mm) organic carbon in 5–15 cm, the particulate organic carbon in 5–50 cm, and soil organic carbon in 5–30 cm compared to plow tillage with straw return due to less carbon input from roots and straw. Organic carbon stocks in micro-aggregates (<0.25 mm) and mineral-associated organic matter (<53 µm) did not vary between tillage practices. Hence the soil organic carbon stocks of plow tillage without straw return (48 Mg ha−1) were similar to that of no-tillage with straw mulch (51 Mg ha−1) but lower than that of plow tillage with straw return (57 Mg ha−1) in 0–50 cm. The mean annual yields of wheat and rice under no-tillage with straw mulch (14 t ha−1) were lower than that of plow tillage without straw return (15 t ha−1) and plow tillage with straw return (16 t ha−1). No-tillage-induced high soil bulk densities limited the rice yields. The yield losses of no-tillage with straw mulch were higher in rice than in wheat. The rice yield losses of no-tillage with straw mulch compared to plow tillage with straw return increased with experiment duration due to decreased available nitrogen in 7–14 cm and phosphorus contents in 0–14 cm over time. Conclusively, plow-tillage is more efficient for carbon sequestration and yield increase than no-tillage under straw return in rice-wheat farming by increasing carbon input in deep soils, soil available nutrients, and decreasing soil compactness.

How to cite this publication

Xintan Zhang, Jie Wang, Xiangyan Feng, Haishui Yang, Yanling Li, Yakov Kuzyakov, Shiping Liu, Feng‐Min Li (2023). Effects of tillage on soil organic carbon and crop yield under straw return. Agriculture Ecosystems & Environment, 354, pp. 108543-108543, DOI: 10.1016/j.agee.2023.108543.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

Agriculture Ecosystems & Environment

DOI

10.1016/j.agee.2023.108543

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access