RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effects of microbial groups on soil organic carbon accrual and mineralization during high- and low-quality litter decomposition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Effects of microbial groups on soil organic carbon accrual and mineralization during high- and low-quality litter decomposition

0 Datasets

0 Files

English
2024
CATENA
Vol 241
DOI: 10.1016/j.catena.2024.108051

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Michaela Dippold
Michaela Dippold

Institution not specified

Verified
Xuejuan Bai
Yuepeng Zhai
Zhifeng Yan
+5 more

Abstract

Litter input regulates the mineralization and accrual of soil organic carbon (SOC), depending on microbial groups and litter quality. Stable isotope probing was used after the addition of 13C-labeled litter of different recalcitrance, including Populus davidiana (characterized by low quality, high C:N, and lignin content) and Quercus wutaishanica (characterized by high quality, low C:N, and lignin content). The flow of litter C to microbial biomass and necromass was followed by quantification of 13C incorporation into phospholipid fatty acids (13C-PLFAs) and amino sugars (13C-AS), and their respiration. The CO2 efflux and positive priming effects (PE) were higher, but the 13C-necromass was lower (8.5% vs. 10%) in the soil with P. davidiana than with Q. wutaishanica. The 13C-necromass continuously increased with P. davidiana litter decomposition, but reached a peak at day 14 after Q. wutaishanica litter addition. These results indicated that the decomposition of resistance compounds mainly resulted in necromass formation after low-quality litter addition. The P. davidiana-derived 13C in fungal PLFAs increased with decomposition, suggesting the importance of these microorganisms in decomposing resistance compounds in low-quality litter despite the bacterial-dominated decomposition process of both litters. Bacteria frequently exhibit versatility in utilizing C from different sources, whereas a larger proportion of fungi display specialization. SOC mineralization increased with the remaining litter but decreased with 13C-G- bacterial PLFAs and 13C-actinobacterial PLFAs after both types of litter addition because starving microbes need to invest more soil C in maintenance respiration vs. biomass formation. 13C-necromass increased with 13C-PLFA because microbial biomass is the primary precursor of necromass. Altogether, low-quality compounds are more readily respired, whereas C from high-quality biopolymers is relatively more assimilated into the necromass. This study further explains the effect of soil microbial groups on SOC under different qualities of litter decomposition and deepens our understanding of the mechanism of SOC sequestration.

How to cite this publication

Xuejuan Bai, Yuepeng Zhai, Zhifeng Yan, Shaoshan An, Jingze Liu, Lanqing Huo, Michaela Dippold, Yakov Kuzyakov (2024). Effects of microbial groups on soil organic carbon accrual and mineralization during high- and low-quality litter decomposition. CATENA, 241, pp. 108051-108051, DOI: 10.1016/j.catena.2024.108051.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

English

Journal

CATENA

DOI

10.1016/j.catena.2024.108051

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access