0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessReduced belowground carbon (C) allocation by plants exposed to ozone may change properties and activities of the microbial community in soils. To investigate how soil microbial biomass and extracellular enzyme activities respond to elevated ozone, we collected soils from a temperate grassland after four years of ozone exposure under fully open-air field conditions. We measured soil microbial biomass, the metabolism of low molecular weight C substrates and hydrolytic extracellular enzyme activities in both bulk soil and isolated aggregates to assess changes in microbial activity and community function. After four years of elevated ozone treatment, soil total organic C was reduced by an average of 20% compared with ambient condition. Elevated ozone resulted in a small but insignificant reduction (4–10%) in microbial biomass in both bulk soil and isolated aggregates. Activities of extracellular enzymes were generally not affected by elevated ozone, except β-glucosidase, whose activity in bulk soil was significantly lower under elevated ozone than ambient condition. Activities of β-glucosidase, leucine aminopeptidase and acid phosphatase were higher in microaggregates (<0.25 mm) as compared to macroaggregates (>0.25 mm). Elevated ozone had no effects on mineralization rates of low molecular weight C substrates in both bulk soil and isolated aggregates. We therefore conclude that the size and activity rather than function of the soil microbial community in this semi-natural grassland are altered by elevated ozone.
Jinyang Wang, Felicity Hayes, Robert S. Turner, David R. Chadwick, Gina Mills, Davey L Jones (2019). Effects of four years of elevated ozone on microbial biomass and extracellular enzyme activities in a semi-natural grassland. The Science of The Total Environment, 660, pp. 260-268, DOI: 10.1016/j.scitotenv.2019.01.040.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2019.01.040
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access