0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Tibetan region is characterized by long winters and large diurnal temperature variations. Using prefabricated bridges combined with a small amount of cast-in-place concrete joints can address the challenging construction environment. To extend the bridge construction window for concrete in the joint, the performance of Ultra-High Performance Concrete (UHPC) under alternating positive and negative temperature environments was investigated. The effects of curing conditions (-10°C to 10°C and natural curing), different proportions of sulfoaluminate cement (0% / 6%), different concrete materials (UHPC/NC), and the presence of antifreeze admixtures on the macro-strength and late-stage microstructure of UHPC were explored. The results indicated that the slump expansion of the prepared UHPC in this study exceeds 600 mm. Alternating temperature environments significantly degrade the mechanical properties of UHPC without antifreeze admixtures. However, for self-made UHPC with antifreeze admixtures, the formed early structure can prevent freeze-thaw damage as long as the critical antifreeze strength is reached. After the temperature rebounded, the later-stage strength of UHPC can continue to develop and reach the compressive strength of samples that had not been exposed to low-temperature curing. The appropriate addition of sulfate aluminate cement positively affected the early compressive strength (1 day) and elastic modulus of UHPC. It also reduces the drying shrinkage of UHPC.
Jincen Guo, Zhixiang Zhou, Zhongya Zhang, Junhua Tang, Xin Li, Yang Zou (2023). Effects of alternating positive and negative temperature curing on the mechanical properties of ultra-high performance concrete. , 20, DOI: https://doi.org/10.1016/j.cscm.2023.e02752.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.cscm.2023.e02752
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access