0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUltra-high-performance concrete (UHPC) has been used as an advanced construction material in civil engineering because of its excellent mechanical properties and durability. However, with the depletion of the raw material (river sand) used for preparing UHPC, it is imperative to find a replacement material. Recycled sand is an alternative raw material for preparing UHPC, but it degrades the performance. In this study, we investigated the use of graphene oxide (GO) as an additive for enhancing the properties of UHPC prepared from recycled sand. The primary objective was to investigate the effects of GO on the mechanical properties and durability of the UHPC at different concentrations. Additionally, the impact of the GO additive on the microstructure of the UHPC prepared from recycled sand was analysed at different mixing concentrations. The addition of GO resulted in the following: (1) The porosity of the UHPC prepared from recycled sand was reduced by 4.45–11.35%; (2) the compressive strength, flexural strength, splitting tensile strength, and elastic modulus of the UHPC prepared from recycled sand were enhanced by 8.24–16.83%, 11.26–26.62%, 15.63–29.54%, and 5.84–12.25%, respectively; (3) the resistance of the UHPC to penetration of chloride ions increased, and the freeze–thaw resistance improved; (4) the optimum mixing concentration of GO in the UHPC was determined to be 0.05 wt.%, according to a comprehensive analysis of its effects on the microstructure, mechanical properties, and durability of the UHPC. The findings of this study provide important guidance for the utilisation of recycled sand resources.
Hongyan Chu, Yu Zhang, Fengjuan Wang, Taotao Feng, Liguo Wang, Danqian Wang (2020). Effect of Graphene Oxide on Mechanical Properties and Durability of Ultra-High-Performance Concrete Prepared from Recycled Sand. Nanomaterials, 10(9), pp. 1718-1718, DOI: 10.3390/nano10091718.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nanomaterials
DOI
10.3390/nano10091718
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access