RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study

0 Datasets

0 Files

English
2018
Journal of Chemical Theory and Computation
Vol 15 (1)
DOI: 10.1021/acs.jctc.8b00915

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Ahmet Altun
Frank Neese
Giovanni Bistoni

Abstract

The development of post-Hartree-Fock (post-HF) energy decomposition schemes that are able to decompose the HF and correlation components of the interaction energy into chemically meaningful contributions is a very active field of research. One of the challenges is to provide a clear-cut quantification to the elusive London dispersion component of the intermolecular interaction. London dispersion is well-known to be a pure correlation effect, and as such it is not properly described by mean field theories. In this context, we have recently developed the local energy decomposition (LED) analysis, which provides a chemically meaningful decomposition of the interaction energy between two or more fragments computed at the domain-based local pair natural orbitals coupled cluster (DLPNO-CCSD(T)) level of theory. In this work, this scheme is used in conjunction with other interpretation tools to study a series of molecular adducts held together by intermolecular interactions of different natures. The HF and correlation components of the interaction energy are thus decomposed into a series of chemically meaningful contributions. Emphasis is placed on discussing the physical effects associated with the inclusion of electron correlation. It is found that four distinct physical effects can contribute to the magnitude of the correlation part of intermolecular binding energies (Δ EintC): (i) London dispersion, (ii) the correlation correction to the reference induction energy, (iii) the correlation correction to the electron sharing process, and (iv) the correlation correction to the permanent electrostatics. As expected, the largest contribution to the correlation binding energy of neutral, apolar molecules is London dispersion, as in the argon dimer case. In contrast, the correction for the HF induction energy dominates Δ EintC in systems in which an apolar molecule interacts with charged or strongly polar species, as in Ar-Li+. This effect has its origin in the systematic underestimation of polarizabilities at the HF level of theory. For similar reasons, electron sharing largely contributes to the correlation binding energy of covalently bound molecules, as in the beryllium dimer case. Finally, the correction for HF permanent electrostatics significantly contributes to Δ EintC in molecules with strong dipoles, such as water and hydrogen fluoride dimers. This effect originates from the characteristic overestimation of dipole moments at the HF level of theory, leading in some cases to positive Δ EintC values. Our results are apparently in contrast to the widely accepted view that Δ EintC is typically dominated by London dispersion, at least, in the strongly interacting region. Clearly, post-HF energy decomposition schemes are very powerful tools to analyze, categorize, and understand the various contributions to the intermolecular interaction energy. Hopefully, this will eventually lead to insights that are helpful in designing systems with tailored properties. All analysis tools presented in this work will be available free of charge in the next release of the ORCA program package.

How to cite this publication

Ahmet Altun, Frank Neese, Giovanni Bistoni (2018). Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study. Journal of Chemical Theory and Computation, 15(1), pp. 215-228, DOI: 10.1021/acs.jctc.8b00915.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Journal of Chemical Theory and Computation

DOI

10.1021/acs.jctc.8b00915

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access