RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils

0 Datasets

0 Files

English
2018
Applied Soil Ecology
Vol 129
DOI: 10.1016/j.apsoil.2018.05.009

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Di Wu
Mehmet Şenbayram
Huadong Zang
+6 more

Abstract

Emissions of greenhouse gases (GHGs), such as carbon dioxide (CO2) and nitrous oxide (N2O) have great impact on global warming and atmospheric chemistry. Biochar addition is a potential option for reducing GHGs emissions through carbon (C) sequestration and N2O mitigation. However, the influences of biochar on C and nitrogen (N) transformations in soil are still unclear, resulting in a poor understanding of the mechanisms of N2O mitigation effects of biochar. Here we carried out two soil incubation experiments to investigate the influence of two common biochars addition (corn cob and olive pulp) with ammonium sulfate on CO2 and N2O emissions from two contrasting soil types (acidic sandy and alkaline clay soil). Furthermore, four extracellular enzymes activities that related to C and N cycling, i.e. cellobiohydrolase, chitinase, xylanase and β-glucosidase, were analyzed to gain insights into the underlying mechanisms of biochar’s effects on CO2 and N2O evolutions. Contrasting effects of two biochars on CO2 and N2O emissions were observed in the two different soils. The corn biochar addition had no significant effect on CO2 and N2O emissions in the alkaline clay soil, but significantly decreased CO2 emissions by 11.8% and N2O emissions by 26.9% in the acidic sandy soil compared to N-fertilizer only treatment. In contrast, olive biochar addition showed no significant effect on CO2 emissions but decreased N2O emissions by 34.3% in the alkaline clay soil, while in the acidic sandy soil addition of olive biochar triggered about a twofold higher maximum CO2 emission rate and decreased N2O emissions by 68.4%. Up to 50–130% higher specific CO2 emissions (per unit of C-related enzyme activity: cellobiohydrolase, chitinases and β-glucosidase) were observed after addition of olive biochar compared to corn biochar addition in the acidic sandy soil. We concluded that biochar’s effects on N2O and CO2 emissions are more pronounced in acidic soils. Alkaline biochar’s N2O mitigation potential in acidic soils seems to be dependent on soil NO3 − content as drastically higher N2O emissions were measured in early phase of the experiment (where soil NO3 − was high) and significantly lower N2O fluxes were obtained in later phases (with lower soil NO3 − content).

How to cite this publication

Di Wu, Mehmet Şenbayram, Huadong Zang, Ferhat Uğurlar, Salih Aydemir, Nicolas Brüggemann, Yakov Kuzyakov, Roland Bol, Еvgenia Blagodatskaya (2018). Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology, 129, pp. 121-127, DOI: 10.1016/j.apsoil.2018.05.009.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

Applied Soil Ecology

DOI

10.1016/j.apsoil.2018.05.009

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access