0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCobbles and boulders on the seafloor are of high ecological value in their function as habitats for a variety of benthic species, contributing to biodiversity and productivity in marine environments. We investigate the origin, physical shape, and structure of habitat-forming cobbles and boulders and reflect on their dynamics in coastal environments of the southwestern Baltic Sea. Stone habitats are not limited to lag deposits and cannot be sufficiently described as static environments, as different dynamic processes lead to changes within the physical habitat structure and create new habitats in spatially disparate areas. Dynamic processes such as (a) ongoing exposure of cobbles and boulders from glacial till, (b) continuous overturning of cobbles, and (c) the migration of cobbles need to be considered. A distinction between allochthonous and autochthonous habitats is suggested. The genesis of sediment types indicates that stone habitats are restricted to their source (glacial till), but hydrodynamic processes induce a redistribution of individual cobbles, leading to the development of new coastal habitats. Thus, coastal stone habitats need to be regarded as dynamic and are changing on a large bandwidth of timescales. In general, wave-induced processes changing the physical structure of these habitats do not occur separately but rather act simultaneously, leading to a dynamic type of habitat.
Gitta Ann von Rönn, Knut Krämer, Markus Franz, Klaus Schwarzer, Hans-Christian Reimers, Christian Winter (2021). Dynamics of Stone Habitats in Coastal Waters of the Southwestern Baltic Sea (Hohwacht Bay). Geosciences, 11(4), pp. 171-171, DOI: 10.3390/geosciences11040171.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Geosciences
DOI
10.3390/geosciences11040171
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access