RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dynamic uplink-downlink optimization in TDD-based small cell networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2014

Dynamic uplink-downlink optimization in TDD-based small cell networks

0 Datasets

0 Files

English
2014
DOI: 10.1109/iswcs.2014.6933488

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Mohammed S. Elbamby
Mehdi Bennis
Walid Saad
+1 more

Abstract

Dynamic Time-division duplex (TDD) can provide efficient and flexible splitting of the common wireless cellular resources between uplink (UL) and downlink (DL) users. In this paper, the UL/DL optimization problem is formulated as a noncooperative game among the small cell base stations (SCBSs) in which each base station aims at minimizing its total UL and DL flow delays. To solve this game, a self-organizing UL/DL resource configuration scheme for TDD-based small cell networks is proposed. Using the proposed scheme, an SCBS is able to estimate and learn the UL and DL loads autonomously while optimizing its UL/DL configuration accordingly. Simulations results show that the proposed algorithm achieves significant gains in terms of packet throughput in case of asymmetric UL and DL traffic loads. This gain increases as the traffic asymmetry increases, reaching up to 97% and 200% gains relative to random and fixed duplexing schemes respectively. Our results also show that the proposed algorithm is well-adapted to dynamic traffic conditions and different network sizes, and operates efficiently in case of severe cross-link interference in which neighboring cells transmit in opposite directions.

How to cite this publication

Mohammed S. Elbamby, Mehdi Bennis, Walid Saad, Matti Latva-aho (2014). Dynamic uplink-downlink optimization in TDD-based small cell networks. , pp. 939-944, DOI: 10.1109/iswcs.2014.6933488.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2014

Authors

4

Datasets

0

Total Files

0

Language

English

DOI

10.1109/iswcs.2014.6933488

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access