0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessClimate change scenarios forecast increasing droughts in large areas globally with significant effects on food production. Nutrient availability is an imperative factor for plant growth and it is greatly modulated by water availability. Nitrogen (N) availability extensively constrains plant growth in most terrestrial ecosystems especially in sub-Saharan Africa, where soils are unfertile and often degraded. How rhizosphere traits at the plant soil-interface affect N uptake in response to drought in N poor tropical soils remains elusive. We used 15N, and 13C pulse labelling to trace and quantify N transport from a root-restricted compartment by AMF across an air gap to the host plants coupled with quantifying the allocation of carbon to below-ground pools. Three sorghum genotypes were grown under optimal and water deficit conditions. By tracer analysis in the plant tissues, we assessed that drought enlarged uptake and delivery 15N by arbuscular mycorrhizal fungi (AMF) from the root restricted compartment across the air gap to the host plant. In addition, drought induced enhanced below-ground incorporation of recently assimilated carbon (C) into the microbial biomass pool both in rhizo-hyphosphere and hyphosphere. Enzyme assays revealed that whereas potential enzymatic reaction (Vmax) of chitinase was reduced under drought, that of leucine amino peptidase (LAP) was upregulated by water scarcity suggesting that N input from protein mineralization was relatively enhanced to that of chitin following moisture limitation. Michaelis-Menten constant (Km) of LAP strongly increased by drought compared to that of chitinase which displayed genotype-specific shifts in rhizosphere enzyme systems. We conclude that in addition to AMF symbiosis, enzyme regulation and enhanced belowground C allocation are key strategies to enhance nitrogen uptake under adverse conditions of resource limitations.
Rosepiah Munene, Osman Mustafa, Sara Loftus, Mutez Ali Ahmed, Michaela Dippold (2023). Drought increases the relative contribution of mycorrhiza-mediated mineral N uptake of Sorghum bicolor. , DOI: 10.5194/egusphere-egu23-14382.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
English
DOI
10.5194/egusphere-egu23-14382
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access