RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems

0 Datasets

0 Files

English
2020
Earth-Science Reviews
Vol 214
DOI: 10.1016/j.earscirev.2020.103501

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Lei Deng
Changhui Peng
Dong‐Gill Kim
+7 more

Abstract

Extreme droughts have serious impacts on the pools, fluxes and processes of terrestrial carbon (C) and nitrogen (N) cycles. A deep understanding is necessary to explore the impacts of this extreme climate change events. To investigate how soil C and N pools and fluxes respond to drought and explore their mechanisms we conducted a meta-analysis synthesizing the responses of soil C and N cycles to droughts (precipitation reduction experiments) in three main natural ecosystems: forests, shrubs and grasslands. Data were collected from 148 recent publications (1815 sampling data at 134 sites) with the drought experiments from 1 to 13 years across the globe. Drought reduced soil organic C content (-3.3%) mainly because of decreased plant litter input (-8.7%) and reduced litter decomposition (-13.0%) across all the three ecosystem types in the world. Drought increased mineral N content (+31%) but reduced N mineralization rate (-5.7%) and nitrification rate (-13.8%), and thus left total N unchanged. Compared with the local precipitation, drought increased the accumulation of dissolved organic C and N contents by +59% and +33%, respectively, due to retarded mineralization and higher stability of dissolved organic matter. Among the three ecosystem types, forest soils strongly increased litter C (+64%, n=8) and N content (+33%, n=6) as well as microbial CO2 (+16%, n=55), whereas total CO2 emission remains unaffected. Drought decreased soil CO2 emission (-15%, n=53) in shrubs due to reduction of microbial respiration and decreased root biomass. The 98% (n=39) increase of NH4 + concentration in forest soils corresponds to 11% (n=37) decrease of NO3 - and so, it reflected the increase of N mineralization rate, but the decrease of nitrification. For shrubs and grasslands, however, stabilized or decreased N mineralization and nitrification mean less N uptake by plants under drought. Overall, the effects of drought on soil C and N cycles were regulated by the ecosystem type, drought duration and intensity. The drought intensity and duration intensify all effects, especially on the decreasing total CO2 emission. However, the most studies mainly focused on the short-term droughts, and there is a lack of comprehensive understanding of how drought effects in a long-term consequences. So, future studies should strengthen drought frequency impacts on ecosystem C and N dynamics in the long-term sequence (> 10 years) in order to face the impacts of global change.

How to cite this publication

Lei Deng, Changhui Peng, Dong‐Gill Kim, Jiwei Li, Yulin Liu, Xuying Hai, Qiuyu Liu, Chunbo Huang, Zhouping Shangguan, Yakov Kuzyakov (2020). Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems. Earth-Science Reviews, 214, pp. 103501-103501, DOI: 10.1016/j.earscirev.2020.103501.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Earth-Science Reviews

DOI

10.1016/j.earscirev.2020.103501

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access