RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2011

Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition

0 Datasets

0 Files

English
2011
Applied Soil Ecology
Vol 48 (1)
DOI: 10.1016/j.apsoil.2011.02.004

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Muhammad Sanaullah
Еvgenia Blagodatskaya
Abad Chabbi
+2 more

Abstract

Little is known about the effect of drought on the interactions of roots and microorganisms in the rhizosphere under different plant communities. We compared drought effects on microbial biomass carbon (MBC) and on enzyme activities in the rhizosphere of two grasses (Lolium perenne and Festuca arundinacea) and one legume (Medicago sativa) grown individually or in mixture under controlled laboratory conditions. We analysed plant biomass production and extracellular enzyme activity as well as MBC in planted and unplanted soils with and without drought. We focused on three enzymes involved in the C cycle (xylanase, β-cellobiosidase and β-glucosidase), one involved in the nitrogen (N) cycle (leucine-aminopeptidase), and one enzyme involved in both cycles (chitinase). The aim of the study was to evaluate the importance of the plant community composition for the response of these parameters to drought. Higher root-to-shoot ratio of all individual species under drought indicated that root growth was sustained under drought, whereas shoot growth was limited. Decrease of the root biomass and root-to-shoot ratio was observed for plants grown in mixture, showing that these plants competed more strongly for light than for water and nutrients compared to monocultures. MBC increased in response to drought in soil under the plant mixture, whereas it showed variable trends under monocultures. Our results further showed that drought and plant species composition were responsible for more than 90% of the variation of enzyme activities. Most enzyme activities decreased in unplanted soil in response to drought. The activity of the enzyme involved in the N cycle increased strongly under mixture and two out of three monocultures, indicating an increased N demand under drought conditions. The activities of enzymes involved in the C cycle in soil under mixture (1) generally were lower during drought compared to soil under monocultures and (2) were unchanged or tended to decrease, while they were more likely to increase under monocultures. This has an important ecological consequence: the decomposition of plant residues and soil organic matter will be slower under drought when plants are grown in mixture compared to monocultures.

How to cite this publication

Muhammad Sanaullah, Еvgenia Blagodatskaya, Abad Chabbi, Cornélia Rumpel, Yakov Kuzyakov (2011). Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Applied Soil Ecology, 48(1), pp. 38-44, DOI: 10.1016/j.apsoil.2011.02.004.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2011

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Applied Soil Ecology

DOI

10.1016/j.apsoil.2011.02.004

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access