RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands

0 Datasets

0 Files

English
2020
Global Change Biology
Vol 26 (6)
DOI: 10.1111/gcb.15101

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Sajjad Raza
Na Miao
Peizhou Wang
+4 more

Abstract

Intensive crop production systems worldwide, particularly in China, rely heavily on nitrogen (N) fertilization, but left more than 50% of fertilizer N in the environment. Nitrogen (over) fertilization and atmospheric N deposition induce soil acidification, which is neutralized by soil inorganic carbon (SIC; carbonates), and carbon dioxide (CO2 ) is released to the atmosphere. For the first time, the loss of SIC stocks in response to N-induced soil acidification was estimated for Chinese croplands from 1980 to 2020 and forecasts were made up to 2100. The SIC stocks in croplands in 1980 were 2.16 Pg C (16.3 Mg C/ha) in the upper 40 cm, 7% (0.15 Pg C; 1.1 Mg C/ha) of which were lost from 1980 to 2020. During these 40 years, 7 million ha of cropland has become carbonate free. Another 37% of the SIC stocks may be lost up to 2100 in China, leaving 30 million ha of cropland (37.8%) without carbonates if N fertilization follows the business-as-usual (BAU) scenario. Compared to the BAU scenario, the reduction in N input by 15%-30% after 2020 (scenarios S1 and S2) will decrease carbonate dissolution by 18%-41%. If N input remains constant as noted in 2020 (S3) or decreases by 1% annually (S4), a reduction of up to 52%-67% in carbonate dissolution is expected compared to the BAU scenario. The presence of CaCO3 in the soil is important for various processes including acidity buffering, aggregate formation and stabilization, organic matter stabilization, microbial and enzyme activities, nutrient cycling and availability, and water permeability and plant productivity. Therefore, optimizing N fertilization and improving N-use efficiency are important for decreasing SIC losses from acidification. N application should be strictly calculated based on crop demand, and any overfertilization should be avoided to prevent environmental problems and soil fertility decline associated with CaCO3 losses.

How to cite this publication

Sajjad Raza, Na Miao, Peizhou Wang, Xiaotang Ju, Zhujun Chen, Jianbin Zhou, Yakov Kuzyakov (2020). Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Global Change Biology, 26(6), pp. 3738-3751, DOI: 10.1111/gcb.15101.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Global Change Biology

DOI

10.1111/gcb.15101

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access