0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe cloud radio access network (C-RAN) concept, in which densely deployed access points (APs) are empowered by cloud computing to cooperatively support mobile users (MUs), to improve mobile data rates, has been recently proposed. However, the high density of active APs results in severe interference and also inefficient energy consumption. Moreover, the growing popularity of highly interactive applications with stringent uplink (UL) requirements, e.g., network gaming and real-time broadcasting by wireless users, means that the UL transmission is becoming more crucial and requires special attention. Therefore in this paper, we propose a joint downlink (DL) and UL MU-AP association and beamforming design to coordinate interference in the C-RAN for energy minimization, a problem which is shown to be NP hard. Due to the new consideration of UL transmission, it is shown that the two state-of-the-art approaches for finding computationally efficient solutions of joint MU-AP association and beamforming considering only the DL, i.e., group-sparse optimization and relaxed-integer programming, cannot be modified in a straightforward way to solve our problem. Leveraging on the celebrated UL-DL duality result, we show that by establishing a virtual DL transmission for the original UL transmission, the joint DL and UL optimization problem can be converted to an equivalent DL problem in C-RAN with two inter-related subproblems for the original and virtual DL transmissions, respectively. Based on this transformation, two efficient algorithms for joint DL and UL MU-AP association and beamforming design are proposed, whose performances are evaluated and compared with other benchmarking schemes through extensive simulations.
Shixin Luo, Rui Zhang, Teng Joon Lim (2014). Downlink and Uplink Energy Minimization Through User Association and Beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), pp. 494-508, DOI: 10.1109/twc.2014.2352619.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2014.2352619
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access