RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Double-IRS Aided MIMO Communication Under LoS Channels: Capacity Maximization and Scaling

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Double-IRS Aided MIMO Communication Under LoS Channels: Capacity Maximization and Scaling

0 Datasets

0 Files

English
2022
IEEE Transactions on Communications
Vol 70 (4)
DOI: 10.1109/tcomm.2022.3151893

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Yitao Han
Shuowen Zhang
Lingjie Duan
+1 more

Abstract

Intelligent reflecting surface (IRS) is a promising technology to extend the wireless signal coverage and support the high performance communication. By intelligently adjusting the reflection coefficients of a large number of passive reflecting elements, the IRS can modify the wireless propagation environment in favour of signal transmission. Different from most of the prior works which did not consider any cooperation between IRSs, in this work we propose and study a cooperative double-IRS aided multiple-input multiple-output (MIMO) communication system under the line-of-sight (LoS) propagation channels. We investigate the capacity maximization problem by jointly optimizing the transmit covariance matrix and the passive beamforming matrices of the two cooperative IRSs. Although the above problem is non-convex and difficult to solve, we transform and simplify the original problem by exploiting a tractable characterization of the LoS channels. Then we develop a novel low-complexity algorithm whose complexity is independent of the number of IRS elements. Moreover, we analyze the capacity scaling orders of the double-IRS aided MIMO system with respect to an asymptotically large number of IRS elements or transmit power, which significantly outperform those of the conventional single-IRS aided MIMO system, thanks to the cooperative power gain brought by the double-reflection link and the spatial multiplexing gain harvested from the two single-reflection links. Extensive numerical results are provided to show that by exploiting the LoS channel properties, our proposed algorithm can achieve a desirable performance with low computational time. Also, our capacity scaling analysis is validated, and the double-IRS system is shown to achieve a much higher rate than its single-IRS counterpart as long as the number of IRS elements or the transmit power is not small.

How to cite this publication

Yitao Han, Shuowen Zhang, Lingjie Duan, Rui Zhang (2022). Double-IRS Aided MIMO Communication Under LoS Channels: Capacity Maximization and Scaling. IEEE Transactions on Communications, 70(4), pp. 2820-2837, DOI: 10.1109/tcomm.2022.3151893.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Communications

DOI

10.1109/tcomm.2022.3151893

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access