RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies

0 Datasets

0 Files

English
2024
Environmental Science & Technology
Vol 58 (19)
DOI: 10.1021/acs.est.3c10247

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Shahid Iqbal
Jianchu Xu
Muhammad Arif
+11 more

Abstract

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 μm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.

How to cite this publication

Shahid Iqbal, Jianchu Xu, Muhammad Arif, Fiona Ruth Worthy, Davey L Jones, Sehroon Khan, Sulaiman Ali Alharbi, Ekaterina Filimonenko, Sadia Nadir, Dengpan Bu, Awais Shakoor, Heng Gui, Douglas Schaefer, Yakov Kuzyakov (2024). Do Added Microplastics, Native Soil Properties, and Prevailing Climatic Conditions Have Consequences for Carbon and Nitrogen Contents in Soil? A Global Data Synthesis of Pot and Greenhouse Studies. Environmental Science & Technology, 58(19), pp. 8464-8479, DOI: 10.1021/acs.est.3c10247.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

14

Datasets

0

Total Files

0

Language

English

Journal

Environmental Science & Technology

DOI

10.1021/acs.est.3c10247

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access