0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIdentifying and understanding the active microbial communities and interactions involved in plant residue utilization are key questions to elucidate the transformation of soil organic matter (SOM) in agricultural ecosystems. Microbial community composition responds strongly to management, but little is known about specific microbial groups involved in plant residue utilization and, consequently, microbial functions under different methods of fertilization. We combined DNA stable-isotope ( 13 C) probing and high-throughput sequencing to identify active fungal and bacterial groups degrading residues in soils after 3 years of mineral fertilization with and without manure. Manuring changed the active microbial composition and complexified microbial interactions involved in residue C flow. Most fungal genera, especially Chaetomium , Staphylotrichum, Penicillium , and Aspergillus , responded to residue addition faster in soils that historically had received manure. We generated a valuable library of microorganisms involved in plant residue utilization for future targeted research to exploit specific functions of microbial groups in organic matter utilization and C sequestration.
Yali Kong, Yakov Kuzyakov, Yang Ruan, Junwei Zhang, Tingting Wang, Min Wang, Shiwei Guo, Qirong Shen, Ning Ling (2020). DNA Stable-Isotope Probing Delineates Carbon Flows from Rice Residues into Soil Microbial Communities Depending on Fertilization. Applied and Environmental Microbiology, 86(7), DOI: 10.1128/aem.02151-19.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Applied and Environmental Microbiology
DOI
10.1128/aem.02151-19
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access