0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDistributed optimization achieves a minimized objective function through collaboration among distributed agents. Considering limited communication capabilities and privacy concerns, this article proposes a dynamic event-triggered differentially private gradient-tracking algorithm for distributed optimization. The communication requirement is reduced by event triggering, while the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon$</tex-math> </inline-formula> -differential privacy is guaranteed by perturbations on states and the tracking of the average gradient. The convergence point is uniquely determined by the noise injected to the tracking. Sufficient conditions for stepsizes are established theoretically to guarantee the convergence in mean and almost surely. Moreover, the theoretical privacy level is rigorously obtained and the positive effect of the event-triggered communication on the privacy is also discussed. Simulations are conducted for the classification of the dataset on the stability of a 4-node star power system to verify the theoretical findings.
Yuan Yang, Wangli He, Wenli Du, Yu‐Chu Tian, Qinglong Qinglong Han, Feng Qian (2024). Distributed Gradient Tracking for Differentially Private Multi-Agent Optimization With a Dynamic Event-Triggered Mechanism. IEEE Transactions on Systems Man and Cybernetics Systems, 54(5), pp. 3044-3055, DOI: 10.1109/tsmc.2024.3357253.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Systems Man and Cybernetics Systems
DOI
10.1109/tsmc.2024.3357253
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access