RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration

0 Datasets

0 Files

English
2015
Systems & Control Letters
Vol 81
DOI: 10.1016/j.sysconle.2015.04.002

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guanrong Chen
Guanrong Chen

City University Of Hong Kong

Verified
Yu Zhao
Zhisheng Duan
Guanghui Wen
+1 more

Abstract

This paper addresses the distributed finite-time tracking problem for a group of mobile agents modeled by double-integrator dynamics under a leader with bounded unknown acceleration. First, a distributed finite-time tracking protocol is designed based on both the relative position and the relative velocity measurements. This protocol can drive the states of the followers to track the leader in finite time under the constraint that the leader’s acceleration is bounded but unknown to the followers. Then, a novel position-based tracking protocol is designed and analyzed for solving the distributed finite-time tracking problem when both velocity and acceleration measurements are not available for the followers. It is theoretically proved that the followers can move to be with the leader in finite time if the network topology is undirected among the followers but has a directed path from the leader to each follower. In particular, the position-based protocol does not require the relative input information between the agents. Finally, the effectiveness of the algorithms is illustrated by numerical simulations.

How to cite this publication

Yu Zhao, Zhisheng Duan, Guanghui Wen, Guanrong Chen (2015). Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration. Systems & Control Letters, 81, pp. 8-13, DOI: 10.1016/j.sysconle.2015.04.002.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Systems & Control Letters

DOI

10.1016/j.sysconle.2015.04.002

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access