0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, a distributed average tracking (DAT) problem is studied for Lipschitz-type of nonlinear dynamical systems. The objective is to design DAT algorithms for locally interactive agents to track the average of multiple reference signals. Here, in both dynamics of agents and reference signals, there is a nonlinear term satisfying a Lipschitz-type condition. Three types of DAT algorithms are designed. First, based on state-dependent-gain design principles, a robust DAT algorithm is developed for solving DAT problems without requiring the same initial condition. Second, by using a gain adaption scheme, an adaptive DAT algorithm is designed to remove the requirement that global information, such as the eigenvalue of the Laplacian and the Lipschitz constant, is known to all agents. Third, to reduce chattering and make the algorithms easier to implement, a couple of continuous DAT algorithms based on time-varying or time-invariant boundary layers are designed, respectively, as a continuous approximation of the aforementioned discontinuous DAT algorithms. Finally, some simulation examples are presented to verify the proposed DAT algorithms.
Yu Zhao, Yongfang Liu, Guanghui Wen, Xinghuo Yu, Guanrong Chen (2018). Distributed Average Tracking for Lipschitz-Type of Nonlinear Dynamical Systems. IEEE Transactions on Cybernetics, 49(12), pp. 4140-4152, DOI: 10.1109/tcyb.2018.2859352.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2018.2859352
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access