0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this article, the constrained optimization problem with its global objective function being the sum of convex local cost functions and the constraint being a closed convex set is researched. The aim of this study is to solve the researched problem in a distributed manner, that is, using only local computations and local information exchanges. Toward this end, two gradient-tracking-based distributed optimization algorithms are designed for the considered problem over weight-balanced and weight-unbalanced graphs, respectively. Since the classical projection method is unsuitable to handle the closed convex set constraint under the gradient-tracking framework, a new indirect projection method is employed in this article to deal with the involved closed convex set constraint. Furthermore, two time scales are introduced to complete the convergence analyses. In addition, under the condition that all local cost functions are strongly convex and L -smooth, it is proved that the algorithms with well-selected fixed step sizes have linear convergence rates.
Hongzhe Liu, Wenwu Yu, Guanrong Chen (2020). Discrete-Time Algorithms for Distributed Constrained Convex Optimization With Linear Convergence Rates. IEEE Transactions on Cybernetics, 52(6), pp. 4874-4885, DOI: 10.1109/tcyb.2020.3022240.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2020.3022240
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access