0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe impact of traumatic spinal cord injury on structural integrity, cortical reorganization and ensuing disability is variable and may depend on a dynamic interaction between the severity of local damage and the capacity of the brain for plastic reorganization. We investigated trauma-induced anatomical changes in the spinal cord and brain, and explored their relationship to functional changes in sensorimotor cortex. Structural changes were assessed using cross-sectional cord area, voxel-based morphometry and voxel-based cortical thickness of T1-weighted images in 10 subjects with cervical spinal cord injury and 16 controls. Cortical activation in response to right-sided (i) handgrip; and (ii) median and tibial nerve stimulation were assessed using functional magnetic resonance imaging. Regression analyses explored associations between cord area, grey and white matter volume, cortical activations and thickness, and disability. Subjects with spinal cord injury had impaired upper and lower limb function bilaterally, a 30% reduced cord area, smaller white matter volume in the pyramids and left cerebellar peduncle, and smaller grey matter volume and cortical thinning in the leg area of the primary motor and sensory cortex compared with controls. Functional magnetic resonance imaging revealed increased activation in the left primary motor cortex leg area during handgrip and the left primary sensory cortex face area during median nerve stimulation in subjects with spinal cord injury compared with controls, but no increased activation following tibial nerve stimulation. A smaller cervical cord area was associated with impaired upper limb function and increased activations with handgrip and median nerve stimulation, but reduced activations with tibial nerve stimulation. Increased sensory deficits were associated with increased activations in the left primary sensory cortex face area due to median nerve stimulation. In conclusion, spinal cord injury leads to cord atrophy, cortical atrophy of primary motor and sensory cortex, and cortical reorganization of the sensorimotor system. The degree of cortical reorganization is predicted by spinal atrophy and is associated with significant disability.
Patrick Freund, Nikolaus Weiskopf, Nick Ward, Chloe Hutton, Angela Gall, Olga Ciccarelli, Michael Craggs, Karl Friston, Alan J. Thompson (2011). Disability, atrophy and cortical reorganization following spinal cord injury. , 134(6), DOI: https://doi.org/10.1093/brain/awr093.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2011
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1093/brain/awr093
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access