0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis letter reports an electrocatalytic study of electrospun anatase nanofibers decorated with Pt catalysts in the form of nanoparticles or nanowires. We decorated the surface of nanofibers with Pt through a polyol process, in which nanoparticles of 2−5 nm in size were formed with different densities depending on the reaction time. By adding Fe(III) ions to the polyol process, we also obtained Pt nanowires of ∼7 nm in diameter and up to 125 nm in length. We then studied the effects of both the coverage and morphology of the Pt nanostructures on the methanol oxidation reaction. Nanofibers with a submonolayer of Pt nanoparticles were found to display improved catalytic durability over commercial Pt/C as determined by chronoamperometry owing to a synergistic effect of the underlying anatase surface and the Pt nanostructures with well-defined facets. Improvement in catalytic activity and durability were also observed for Pt nanowires, indicating that the additional catalytic facets on the nanowires can enhance both catalytic ability and robustness.
Eric Formo, Zhenmeng Peng, Eric Lee, Xianmao Lu, Hong Yang, Younan Xia (2008). Direct Oxidation of Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of Anatase. , 112(27), DOI: https://doi.org/10.1021/jp803763q.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jp803763q
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access