0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNeutrophilic inflammation is characteristic of chronic obstructive pulmonary disease (COPD); yet, there are no effective antiinflammatory therapies. The PDE4 inhibitor roflumilast is approved for use in COPD and suppresses sputum neutrophilia. The mechanism underlying this observation is unclear; therefore, this study addressed whether roflumilast directly affected neutrophil migration. Blood-derived neutrophils were isolated from nonsmokers, smokers, and patients with COPD, and chemotaxis was measured using Boyden chambers. Intracellular calcium ion concentration was measured by fluorimetry, and shape change and CD11b expression were measured by flow cytometry. Neutrophils from patients with COPD showed enhanced chemotactic responses toward both CXCL1 and leukotriene B4 compared with control cells. Chemotaxis was inhibited by both the active metabolite roflumilast N-oxide and rolipram in a concentration-dependent manner with no difference in responsiveness between subjects. Roflumilast N-oxide and rolipram were less efficacious against CXCL1 and leukotriene B4-mediated intracellular calcium ion concentration, suggesting that inhibition was not via this pathway. Both PDE4 inhibitors attenuated chemoattractant-mediated shape change and CD11b upregulation, suggesting common mechanisms. The stable cAMP analog 8-bromoadenosine 3',5'-cAMP inhibited chemotaxis, as did the direct Epac1 (exchange protein directly activated by cAMP 1) activator 8-(4-chlorophenylthio)-2'-O-methyladenosine 3',5'-cAMP but not the direct protein kinase A activator N6-benzoyladenosine-3',5'-cAMP. These data suggest that roflumilast inhibits neutrophil chemotaxis directly via a cAMP-mediated mechanism requiring activation of Epac1 and that Epac1 activators could reduce COPD neutrophilic inflammation.
Amy E. Dunne, Theerasuk Kawamatawong, Peter Fenwick, Ceri Davies, Hannah Tullett, Peter J Barnes, Louise Donnelly (2018). Direct Inhibitory Effect of the PDE4 Inhibitor Roflumilast on Neutrophil Migration in Chronic Obstructive Pulmonary Disease. , 60(4), DOI: https://doi.org/10.1165/rcmb.2018-0065oc.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1165/rcmb.2018-0065oc
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access