0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessElectrocatalysts comprised of Pt–Ni alloy nanocrystals have garnered substantial attention due to their outstanding performance in catalyzing the oxygen reduction reaction (ORR). Herein, we present the synthesis of Pt–Ni nanocrystals with a variety of controlled shapes and compositions in an effort to investigate the impact of the Ni content on the formation of {111} facets and thereby the ORR activity. By completely excluding O2 from the reaction system, we could prevent the generation of Ni(OH)2 on the surface of the nanocrystals and thereby achieve a linear relationship between the atomic ratio of Pt to Ni in the nanocrystals and the feeding ratio of the precursors. The atomic ratio of Pt to Ni in the Pt–Ni nanocrystals was tunable within the range of 1.2–7.2, while their average sizes were kept around 9 nm in terms of edge length. In addition, a quantitative correlation between the area ratio of {111} to {100} facets and the feeding ratio of Pt(II) to Ni(II) was obtained by adjusting the mole fraction of the Ni(II) precursor in the reaction mixture. For the catalysts comprising octahedral nanocrystals, their specific ORR activities exhibited a positive correlation with the Pt/Ni atomic ratio. After the accelerated durability test, both specific and mass activity displayed a volcano-type trend with a peak value at a Pt/Ni atomic ratio of 1.6.
Minghao Xie, Min Shen, Ruhui Chen, Younan Xia (2023). Development of Highly-Active Catalysts toward Oxygen Reduction by Controlling the Shape and Composition of Pt–Ni Nanocrystals. , 15(42), DOI: https://doi.org/10.1021/acsami.3c10514.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsami.3c10514
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access