RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Development of Building Thermal Load and Discomfort Degree Hour Prediction Models Using Data Mining Approaches

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Development of Building Thermal Load and Discomfort Degree Hour Prediction Models Using Data Mining Approaches

0 Datasets

0 Files

English
2018
Energies
Vol 11 (6)
DOI: 10.3390/en11061570

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Yaolin Lin
Shiquan Zhou
Wei Yang
+2 more

Abstract

Thermal load and indoor comfort level are two important building performance indicators, rapid predictions of which can help significantly reduce the computation time during design optimization. In this paper, a three-step approach is used to develop and evaluate prediction models. Firstly, the Latin Hypercube Sampling Method (LHSM) is used to generate a representative 19-dimensional design database and DesignBuilder is then used to obtain the thermal load and discomfort degree hours through simulation. Secondly, samples from the database are used to develop and validate seven prediction models, using data mining approaches including multilinear regression (MLR), chi-square automatic interaction detector (CHAID), exhaustive CHAID (ECHAID), back-propagation neural network (BPNN), radial basis function network (RBFN), classification and regression trees (CART), and support vector machines (SVM). It is found that the MLR and BPNN models outperform the others in the prediction of thermal load with average absolute error of less than 1.19%, and the BPNN model is the best at predicting discomfort degree hour with 0.62% average absolute error. Finally, two hybrid models—MLR (MLR + BPNN) and MLR-BPNN—are developed. The MLR-BPNN models are found to be the best prediction models, with average absolute error of 0.82% in thermal load and 0.59% in discomfort degree hour.

How to cite this publication

Yaolin Lin, Shiquan Zhou, Wei Yang, Long Shi, Chun‐Qing Li (2018). Development of Building Thermal Load and Discomfort Degree Hour Prediction Models Using Data Mining Approaches. Energies, 11(6), pp. 1570-1570, DOI: 10.3390/en11061570.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Energies

DOI

10.3390/en11061570

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access