0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLocal chemical ordering (LCO) in the CrCoNi medium-entropy alloy was investigated by transmission electron microscopy (TEM) after different annealing treatments and their corresponding mechanical properties by bulk tensile tests and nanoindentation. A cold-rolled alloy was annealed at 1000°C for 0.5 h followed by ice water quenching and then aged at a number of different temperatures (600°C, 700°C, 800°C, 900°C, and 1000°C) under vacuum for 240 h to generate different degrees of chemical ordering. A splat-quenched sample rapidly cooled from the liquid phase was also examined. While bulk mechanical properties did not vary among samples with equivalent grain sizes, nanoindentation tests revealed notable differences. As indicated by the load at first pop-in using a Berkovich tip or the indentation yield strength via continuous stiffness measurements using a 10 μm spherical tip, the nanoindentation tests revealed that the stress for onset of plasticity during indentation varied with heat treatment and peaked in the 900°C aged sample. Energy-filtered TEM characterization indicated the presence of ordering in all specimens, with a higher degree of LCO in the aged samples relative to the splat-quenched and 1000°C-quenched samples. The evolution of LCO during aging was determined to occur on the time scale similar to those of bulk diffusion. The difference in nanoindentation strength was attributed to the difference in dislocation nucleation barriers imposed by different degrees of LCO.
Mingwei Zhang, Qin Yu, Carolina Frey, Flynn Walsh, Madelyn I. Payne, Punit Kumar, Dongye Liu, Tresa M. Pollock, Mark Asta, Robert O. Ritchie, Andrew M. Minor (2022). Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation. Acta Materialia, 241, pp. 118380-118380, DOI: 10.1016/j.actamat.2022.118380.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
Acta Materialia
DOI
10.1016/j.actamat.2022.118380
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access