RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations*

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations*

0 Datasets

0 Files

English
2014
Journal of Climate
Vol 28 (4)
DOI: 10.1175/jcli-d-14-00303.1

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kevin E Trenberth
Kevin E Trenberth

National Center For Atmospheric Research

Verified
Ning Lu
Kevin E Trenberth
Jun Qin
+2 more

Abstract

Long-term trends in precipitable water (PW) are an important component of climate change assessments for the Tibetan Plateau (TP). PW products from Moderate Resolution Imaging Spectroradiometer (MODIS) are able to provide good spatial coverage of PW over the TP but limited in time coverage, while the meteorological stations in the TP can estimate long-term PW but unevenly distributed. To detect the decadal trend in PW over the TP, Bayesian inference theory is used to construct long-term and spatially continuous PW data for the TP based on the station and MODIS observations. The prior information on the monthly-mean PW from MODIS and the 63 stations over the TP for 2000–06 is used to get the posterior probability knowledge that is utilized to build a Bayesian estimation model. This model is then operated to estimate continuous monthly-mean PW for 1970–2011 and its performance is evaluated using the monthly MODIS PW anomalies (2007–11) and annual GPS PW anomalies (1995–2011), with RMSEs below 0.65 mm, to demonstrate that the model estimation can reproduce the PW variability over the TP in both space and time. Annual PW series show a significant increasing trend of 0.19 mm decade−1 for the TP during the 42 years. The most significant PW increase of 0.47 mm decade−1 occurs for 1986–99 and an insignificant decrease occurs for 2000–11. From the comparison of the PW data from JRA-55, ERA-40, ERA-Interim, MERRA, NCEP-2, and ISCCP, it is found that none of them are able to show the actual long-term trends and variability in PW for the TP as the Bayesian estimation.

How to cite this publication

Ning Lu, Kevin E Trenberth, Jun Qin, Kun Yang, Ling Yao (2014). Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations*. Journal of Climate, 28(4), pp. 1707-1722, DOI: 10.1175/jcli-d-14-00303.1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of Climate

DOI

10.1175/jcli-d-14-00303.1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access