RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2010

Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects

0 Datasets

0 Files

en
2010
Vol 4 (2)
Vol. 4
DOI: 10.1021/nn901805g

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Youfan Hu
Yanling Chang
Fei Peng
+2 more

Abstract

The localized coupling between piezoelectric and photoexcitation effects of a ZnO micro/nanowire device has been studied for the first time with the goal of designing and controlling the electrical transport characteristics of the device. The piezoelectric effect tends to raise the height of the local Schottky barrier (SB) at the metal−ZnO contact, while photoexcitation using a light that has energy higher than the band gap of ZnO lowers the SB height. By tuning the relative contributions of the effects from piezoelectricity via strain and photoexcitation via light intensity, the local contact can be tuned step-by-step and/or transformed from Schottky to Ohmic or from Ohmic to Schottky. This study describes a new principle for controlling the coupling among mechanical, photonic, and electrical properties of ZnO nanowires, which could be potentially useful for fabricating piezo-phototronic devices.

How to cite this publication

Youfan Hu, Yanling Chang, Fei Peng, Robert L. Snyder, Zhong Lin Wang (2010). Designing the Electric Transport Characteristics of ZnO Micro/Nanowire Devices by Coupling Piezoelectric and Photoexcitation Effects. , 4(2), DOI: https://doi.org/10.1021/nn901805g.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2010

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/nn901805g

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access