0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCurrently adopted cross-linking methods in rubber industry are suffering from variable persistent issues, including the utilization of toxic curing packages, release of volatile organic compounds (VOCs) and difficulties in the recycling of end-of-life materials. It is of great importance to explore a green cross-linking strategy in the area. Herein, we report a new “green” strategy based on hydrolyzable ester cross-links for cross-linking diene-typed elastomers. As a proof of concept, a commercial carboxylated nitrile rubber (XNBR) is efficiently cross-linked by a bio-based agent, epoxidized soybean oil (ESO), without any toxic additives. ESO exhibits an excellent plasticization effect and excellent scorch safety for XNBR. The cross-linking density and mechanical properties of the ESO-cured XNBR can be manipulated in a wide range by changing simply varying the content of ESO. In addition, zinc oxide (ZnO) performs as a catalyst to accelerate the epoxide opening reaction and improve the cross-linking efficiency, serving as reinforcement points to enhance the overall mechanical properties of the ESO-cured XNBR. Furthermore, the end-of-life elastomer materials demonstrate a closed-loop recovery by selectively cleaving the ester bonds, resulting in very high recovery of the mechanical performance of the recycled composites. This strategy provides an unprecedented green avenue to cross-link diene elastomers and a cost-effective approach to further recycle the obtained cross-linked elastomers at high efficiency.
Ganggang Zhang, Haoran Feng, Kuan Liang, Zhao Wang, Xiaolin Li, Xinxin Zhou, Guo Baochun, Liqun Zhang (2020). Design of next-generation cross-linking structure for elastomers toward green process and a real recycling loop. Science Bulletin, 65(11), pp. 889-898, DOI: 10.1016/j.scib.2020.03.008.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Science Bulletin
DOI
10.1016/j.scib.2020.03.008
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access