RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications

0 Datasets

0 Files

English
2025
Applied Sciences
Vol 15 (9)
DOI: 10.3390/app15094987

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Shenen Chen
Shenen Chen

Institution not specified

Verified
Karl Lin
Shenen Chen
Tiefu Zhao
+3 more

Abstract

Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems.

How to cite this publication

Karl Lin, Shenen Chen, Tiefu Zhao, Nicole Braxtan, Xiuhu Sun, Lynn Harris (2025). Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications. Applied Sciences, 15(9), pp. 4987-4987, DOI: 10.3390/app15094987.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Applied Sciences

DOI

10.3390/app15094987

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access