RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Degeneracy and Redundancy in Active Inference

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Degeneracy and Redundancy in Active Inference

0 Datasets

0 Files

en
2020
Vol 30 (11)
Vol. 30
DOI: 10.1093/cercor/bhaa148

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Noor Sajid
Thomas Parr
Thomas M.H. Hope
+2 more

Abstract

The notions of degeneracy and redundancy are important constructs in many areas, ranging from genomics through to network science. Degeneracy finds a powerful role in neuroscience, explaining key aspects of distributed processing and structure-function relationships in the brain. For example, degeneracy accounts for the superadditive effect of lesions on functional deficits in terms of a "many-to-one" structure-function mapping. In this paper, we offer a principled account of degeneracy and redundancy, when function is operationalized in terms of active inference, namely, a formulation of perception and action as belief updating under generative models of the world. In brief, "degeneracy" is quantified by the "entropy" of posterior beliefs about the causes of sensations, while "redundancy" is the "complexity" cost incurred by forming those beliefs. From this perspective, degeneracy and redundancy are complementary: Active inference tries to minimize redundancy while maintaining degeneracy. This formulation is substantiated using statistical and mathematical notions of degenerate mappings and statistical efficiency. We then illustrate changes in degeneracy and redundancy during the learning of a word repetition task. Finally, we characterize the effects of lesions-to intrinsic and extrinsic connections-using in silico disconnections. These numerical analyses highlight the fundamental difference between degeneracy and redundancy-and how they score distinct imperatives for perceptual inference and structure learning that are relevant to synthetic and biological intelligence.

How to cite this publication

Noor Sajid, Thomas Parr, Thomas M.H. Hope, Cathy J. Price, Karl Friston (2020). Degeneracy and Redundancy in Active Inference. , 30(11), DOI: https://doi.org/10.1093/cercor/bhaa148.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1093/cercor/bhaa148

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access