0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe electronic properties of the high spin mononuclear MnII complexes [Mn(tpa)(NCS)2] (1) (tpa=tris-2-picolylamine), [Mn(tBu3-terpy)2](PF6)2 (2) (tBu3-terpy=4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) and [Mn(terpy)2](I)2 (3) (terpy=2,2':6',2''-terpyridine) with an N6 coordination sphere have been determined by multifrequency EPR spectroscopy. The X-ray structures of 1.CH3CN and 2.C4H10 O.0.5 C2H5OH.0.5 CH3OH reveal that the MnII ion lies at the center of a distorted octahedron. The D-values of 1-3 all fall in the narrow range of 0.041 to 0.105 cm(-1). The comparison of the results reported here and those found in the literature is consistent with the following observation: the D value is sensitive to the coordination number (6 or 5) of the MnII ion as long as the coordination sphere involves only nitrogen and/or oxygen based ligands. This magneto-structural correlation has been analyzed in this work though DFT model calculations. The zero-field splitting (zfs) parameters of 1-3 have been calculated and are in reasonable agreement with the experimental values. Hypothetical simplified models [Mn(NH3)x(OH2)y]2+ (x+y=5 or 6 and [Mn(NH3)5X]+ (X=OH, Cl)) have been constructed to investigate the origin of the zfs. This investigation reveals i) that D is sensitive to the coordination number (5 or 6) of the MnII ion, ii) for the five coordinate systems the major contribution to D is the spin-orbit coupling part, iii) for the six coordinate systems the major contribution to D is the spin-spin interaction and iv) the deprotonation of a water ligand leads to an increase of D, consistent with the relative ligand fields of OH(-) versus H2O.
Carole Duboc, Marie‐Noëlle Collomb, Jacques Pécaut, Alain Deronzier, Frank Neese (2008). Definition of Magneto‐Structural Correlations for the Mn<sup>II</sup> Ion. Chemistry - A European Journal, 14(21), pp. 6498-6509, DOI: 10.1002/chem.200800426.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Chemistry - A European Journal
DOI
10.1002/chem.200800426
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access