RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery

0 Datasets

0 Files

English
2024
Journal of Hydrology
Vol 638
DOI: 10.1016/j.jhydrol.2024.131512

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Giles Foody
Giles Foody

University Of Nottingham

Verified
Zhen Hao
Giles Foody
Yong Ge
+3 more

Abstract

Surface water area estimation is essential for understanding global environmental dynamics, yet it presents significant challenges, particularly when dealing with small water bodies like ponds and narrow width rivers. Surface water areas for these small bodies are often inaccurately represented by existing methods due to the spatial resolution limitations in commonly used remote sensing images. This study introduces DeepWaterFraction (DWF), a deep learning approach, to estimate percent surface water area from Landsat mission imagery. DWF is trained with a self-training method, which creates training data by upscaling remote sensing images and water map labels to a lower resolution, enabling the creation of a large-scale, global coverage training dataset. DWF demonstrates superior accuracy in estimating areas for small water bodies compared to several existing methods for surface water area estimation, with a pixel-wise root mean squared error of 14.3 %. Specifically, it reduces error rates by 54.3 % for water bodies with a minimum area of 0.001 km2 and by 22.6 % for those with a minimum area of 0.01 km2. DWF’s application in global river discharge inversion is also explored, showcasing its capability to capture width variations in narrow rivers (<90 m) better than existing methods, and its robustness across environments including wetland, tree covers, and urban areas. Even for wider rivers (>150 m), DWF’s performance remains superior, as its ability to accurately quantify mixed water pixel areas effectively reflects discharge variations when the variation area is small. We find that self-training is an effective strategy for generating extensive global training datasets for water mapping, with a high upscaling factor being critical for ensuring label accuracy. This study presents a step forward in the accurate global mapping of water resources.

How to cite this publication

Zhen Hao, Giles Foody, Yong Ge, Xiaobin Cai, Yun Du, Feng Ling (2024). DeepWaterFraction: A globally applicable, self-training deep learning approach for percent surface water area estimation from Landsat mission imagery. Journal of Hydrology, 638, pp. 131512-131512, DOI: 10.1016/j.jhydrol.2024.131512.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Journal of Hydrology

DOI

10.1016/j.jhydrol.2024.131512

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access