0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessComputing accurate yet efficient approximations to the solutions of the electronic Schr\"odinger equation has been a paramount challenge of computational chemistry for decades. Quantum Monte Carlo methods are a promising avenue of development as their core algorithm exhibits a number of favorable properties: it is highly parallel, and scales favorably with the considered system size, with an accuracy that is limited only by the choice of the wave function ansatz. The recently introduced machine-learned parametrizations of quantum Monte Carlo ansatzes rely on the efficiency of neural networks as universal function approximators to achieve state of the art accuracy on a variety of molecular systems. With interest in the field growing rapidly, there is a clear need for easy to use, modular, and extendable software libraries facilitating the development and adoption of this new class of methods. In this contribution, the DeepQMC program package is introduced, in an attempt to provide a common framework for future investigations by unifying many of the currently available deep-learning quantum Monte Carlo architectures. Furthermore, the manuscript provides a brief introduction to the methodology of variational quantum Monte Carlo in real space, highlights some technical challenges of optimizing neural network wave functions, and presents example black-box applications of the program package. We thereby intend to make this novel field accessible to a broader class of practitioners both from the quantum chemistry as well as the machine learning communities.
Zeno Schätzle, Bernát Szabó, Matěj Mezera, Jan Hermann, Frank Noé (2023). DeepQMC: an open-source software suite for variational optimization of deep-learning molecular wave functions. , DOI: https://doi.org/10.48550/arxiv.2307.14123.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2307.14123
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access