0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecently, the state-of-the-art performance in various sensor-based human activity recognition (HAR) tasks has been acquired by deep learning, which can extract automatically features from raw data. In standard convolutional neural networks (CNNs), there is usually the same receptive field (RF) size of artificial neurons within each feature layer. It is well known that the RF size of neurons is able to change adaptively according to the stimulus, which has rarely been exploited in HAR. In this article, a new multibranch CNN is introduced, which utilizes a selective kernel mechanism for HAR. To the best of our knowledge, it is for the first time to adopt an attention idea to perform kernel selection among multiple branches with different RFs in the HAR scenario. We perform extensive experiments on several benchmark HAR datasets, namely, UCI-HAR, UNIMIB SHAR, WISDM, PAMAP2, and OPPORTUNITY, as well as weakly labeled datasets. Ablation experiments show that the selective kernel convolution can adaptively choose an appropriate RF size among multiple branches for classifying numerous human activities. As a result, it can achieve a higher recognition accuracy under a similar computing budget.
Wenbin Gao, Lei Zhang, Wenbo Huang, Fuhong Min, Jun He, Aiguo Song (2021). Deep Neural Networks for Sensor-Based Human Activity Recognition Using Selective Kernel Convolution. , 70, DOI: https://doi.org/10.1109/tim.2021.3102735.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tim.2021.3102735
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access