RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Data-Driven Cyber Security in Perspective—Intelligent Traffic Analysis

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Data-Driven Cyber Security in Perspective—Intelligent Traffic Analysis

0 Datasets

0 Files

English
2019
IEEE Transactions on Cybernetics
Vol 50 (7)
DOI: 10.1109/tcyb.2019.2940940

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Qinglong Qinglong Han
Qinglong Qinglong Han

Swinburne University Of Technology

Verified
Rory Coulter
Qinglong Qinglong Han
Lei Pan
+2 more

Abstract

Social and Internet traffic analysis is fundamental in detecting and defending cyber attacks. Traditional approaches resorting to manually defined rules are gradually replaced by automated approaches empowered by machine learning. This revolution is accelerated by huge datasets which support machine-learning models with outstanding performance. In the context of a data-driven paradigm, this article reviews recent analytic research on cyber traffic over social networks and the Internet by using a set of common concepts of similarity, correlation, and collective indication, and by sharing security goals for classifying network host or applications and users or Tweets. The ability to do so is not determined in isolation, but rather drawn for a wide use of many different network or social flows. Furthermore, the flows exhibit many characteristics, such as fixed sized and multiple messages between source and destination. This article demonstrates a new research methodology of data-driven cyber security (DDCS) and its application in social and Internet traffic analysis. The framework of the DDCS methodology consists of three components, that is, cyber security data processing, cyber security feature engineering, and cyber security modeling. Challenges and future directions in this field are also discussed.

How to cite this publication

Rory Coulter, Qinglong Qinglong Han, Lei Pan, Jun Zhang, Yang Xiang (2019). Data-Driven Cyber Security in Perspective—Intelligent Traffic Analysis. IEEE Transactions on Cybernetics, 50(7), pp. 3081-3093, DOI: 10.1109/tcyb.2019.2940940.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Cybernetics

DOI

10.1109/tcyb.2019.2940940

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access