0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessEvolving Android malware poses a severe security threat to mobile users, and machine-learning (ML)-based defense techniques attract active research. Due to the lack of knowledge, many zero-day families' malware may remain undetected until the classifier gains specialized knowledge. The most existing ML-based methods will take a long time to learn new malware families in the latest malware family landscape. Existing ML-based Android malware detection and classification methods struggle with the fast evolution of the malware landscape, particularly in terms of the emergence of zero-day malware families and limited representation of single-view features. In this article, a new multiview feature intelligence (MFI) framework is developed to learn the representation of a targeted capability from known malware families for recognizing unknown and evolving malware with the same capability. The new framework performs reverse engineering to extract multiview heterogeneous features, including semantic string features, API call graph features, and smali opcode sequential features. It can learn the representation of a targeted capability from known malware families through a series of processes of feature analysis, selection, aggregation, and encoding, to detect unknown Android malware with shared target capability. We create a new dataset with ground-truth information regarding capability. Many experiments are conducted on the new dataset to evaluate the performance and effectiveness of the new method. The results demonstrate that the new method outperforms three state-of-the-art methods, including: 1) Drebin; 2) MaMaDroid; and 3) N -opcode, when detecting unknown Android malware with targeted capabilities.
Junyang Qiu, Qinglong Qinglong Han, Wei Luo, Lei Pan, Surya Nepal, Jun Zhang, Yang Xiang (2022). Cyber Code Intelligence for Android Malware Detection. IEEE Transactions on Cybernetics, 53(1), pp. 617-627, DOI: 10.1109/tcyb.2022.3164625.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2022.3164625
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access