0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntroduction: The first-generation bioresorbable scaffolds (BRSs) had a large strut profile to compensate for the insufficient radial strength of bioresorbable polymer materials, resulting in higher scaffold thrombosis rates than conventional drug-eluting stents. To improve the clinical safety and efficacy, the new generation BRSs have been improved by optimal structure design, post-processing of bioresorbable polymer materials, or altering bioresorbable metallic alloys.Areas covered: This review summarizes the lessons learned from the first-generation BRS, updates the clinical outcomes of trials evaluating ABSORB bioresorbable vascular scaffold at long-term and bioresorbable metallic alloy-based devices, and examines recent outcomes of BRS treated in STEMI patients. This review also provides an overview of the current clinical data of seven BRSs manufactured in Asia, and of the BRSs extended application in other clinical arenas.Expert opinion: Drawbacks of the first-generation BRSs need to be addressed by the next generation of these stents with novel materials and technologies. Clinical research, including randomized controlled trials, are required to further evaluate BRSs application in coronary artery disease. The encouraging results of BRSs innovation applied in the peripheral arteries and gastrointestinal tracts support other potential clinical applications of BRS technology.
Xinlei Wu, Sijing Wu, Hideyuki Kawashima, Hironori Hara, Masafumi Ono, Chao Gao, Rutao Wang, Mattia Lunardi, Faisal Sharif, William Wijns, Patrick W. Serruys, Yoshinobu Onuma (2021). Current perspectives on bioresorbable scaffolds in coronary intervention and other fields. Expert Review of Medical Devices, 18(4), pp. 351-366, DOI: 10.1080/17434440.2021.1904894.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Expert Review of Medical Devices
DOI
10.1080/17434440.2021.1904894
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access