0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes a vapor-phase approach to the facial synthesis of cupric oxide (CuO) nanowires supported on the surfaces of various copper substrates that include grids, foils, and wires. A typical procedure simply involved the thermal oxidation of these substrates in air and within the temperature range from 400 to 700 °C. Electron microscopic studies indicated that these nanowires had a controllable diameter in the range of 30−100 nm with lengths of up to 15 μm by varying the temperature and growth time. Electron diffraction and high-resolution TEM studies implied that each CuO nanowire was a bicrystal divided by a (111) twin plane in its middle along the longitudinal axis. A possible mechanism was also proposed to account for the growth of these CuO nanowires.
Xuchuan Jiang, Thurston Herricks, Younan Xia (2002). CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. , 2(12), DOI: https://doi.org/10.1021/nl0257519.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2002
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/nl0257519
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access