0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPatients with chronic obstructive pulmonary disease (COPD) show a poor response to corticosteroids, which has been linked to oxidative stress. Here we show that the long-acting β(2) -agonist formoterol (FM) reversed corticosteroid insensitivity under oxidative stress via inhibition of phosphoinositide-3-kinase (PI3K) signalling.Responsiveness to corticosteroids dexamethasone (Dex), budesonide (Bud) and fluticasone propionate (FP) was determined, as IC(50) values on TNF-α-induced interleukin 8 release, in U937 monocytic cell line treated with hydrogen peroxide (H(2) O(2) ) or peripheral blood mononuclear cells (PBMCs) from patients with COPD or severe asthma.PBMCs from severe asthma and COPD were less sensitive to Dex compared with those from healthy subjects. Both FM (10(-9) M) and salmeterol (SM, 10(-8) M) reversed Dex insensitivity in severe asthma, but only FM restored Dex sensitivity in COPD. Although H(2) O(2) exposure decreased steroid sensitivity in U937 cells, FM restored responsiveness to Bud and FP while the effects of SM were weaker. Additionally, FM, but not SM, partially inhibited H(2) O(2) -induced PI3Kδ-dependent (PKB) phosphorylation. H(2) O(2) decreased SM-induced cAMP production in U937 cells, but did not significantly affect the response to FM. The reduction of SM effects by H(2) O(2) was reversed by pretreatment with LY294002, a PI3K inhibitor, or IC87114, a PI3Kδ inhibitor.FM reversed oxidative stress-induced corticosteroid insensitivity and decreased β(2) adrenoceptor-dependent cAMP production via inhibition of PI3Kδ signalling. FM will be more effective than SM, when combined with corticosteroids, for the treatment of respiratory diseases under conditions of high oxidative stress, such as in COPD.
Christos Rossios, Yasuo To, Grace O. Osoata, Misako Ito, Peter J Barnes, Kazuhiro Ito (2012). Corticosteroid insensitivity is reversed by formoterol via phosphoinositide‐3‐kinase inhibition. , 167(4), DOI: https://doi.org/10.1111/j.1476-5381.2012.01864.x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/j.1476-5381.2012.01864.x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access