0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe reaction FeO(+) + H2 → Fe(+) + H2O is a simple model for hydrogen abstraction processes in biologically important heme systems. The geometries of all relevant stationary points on the lowest sextet and quartet surfaces were optimized using several density functionals as well as the CASSCF method. The corresponding energy profiles were computed at the following levels: density functional theory using gradient-corrected, hybrid, meta, hybrid-meta, and perturbatively corrected double hybrid functionals; single-reference coupled cluster theory including up to single, double, triple, and perturbative quadruple excitations [CCSDT(Q)]; correlated multireference ab initio methods (MRCI, MRAQCC, SORCI, SORCP, MRMP2, NEVPT2, and CASPT2). The calculated energies were corrected for scalar relativistic effects, zero-point vibrational energies, and core-valence correlation effects. MRCI and SORCI energies were corrected for size-consistency errors using an a posteriori Davidson correction (+Q) leading to MRCI+Q and SORCI+Q. Comparison with the available experimental data shows that CCSDT(Q) is most accurate and can thus serve as benchmark method for this electronically challenging reaction. Among the density functionals, B3LYP performs best. In the correlated ab initio calculations with a full-valence active space, SORCI+Q yields the lowest deviations from the CCSDT(Q) reference results, with qualitatively similar energy profiles being obtained from MRCI+Q and MRAQCC. SORCI+Q benefits from the quality of the approximate average natural orbitals used in the final step of the SORCI procedure. Many of the tested methods show surprisingly large errors. The present results validate the common use of B3LYP in computational studies of heme systems and offer guidance on which correlated ab initio methods are most suitable for such studies.
Ahmet Altun, Jürgen Breidung, Frank Neese, Walter Thiel (2014). Correlated Ab Initio and Density Functional Studies on H<sub>2</sub> Activation by FeO<sup>+</sup>. Journal of Chemical Theory and Computation, 10(9), pp. 3807-3820, DOI: 10.1021/ct500522d.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/ct500522d
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access