RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths

0 Datasets

0 Files

en
2017
Vol 11 (12)
Vol. 11
DOI: 10.1021/acsnano.7b07534

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Aifang Yu
Xiong Pu
Rong‐Mei Wen
+7 more

Abstract

Although textile-based triboelectric nanogenerators (TENGs) are highly promising because they scavenge energy from their working environment to sustainably power wearable/mobile electronics, the challenge of simultaneously possessing the qualities of cloth remains. In this work, we propose a strategy for TENG textiles as power cloths in which core–shell yarns with core conductive fibers as the electrode and artificial polymer fibers or natural fibrous materials tightly twined around core conductive fibers are applied as the building blocks. The resulting TENG textiles are comfortable, flexible, and fashionable, and their production processes are compatible with industrial, large-scale textile manufacturing. More importantly, the comfortable TENG textiles demonstrate excellent washability and tailorability and can be fully applied in further garment processing. TENG textiles worn under the arm or foot have also been demonstrated to scavenge various types of energy from human motion, such as patting, walking, and running. All of these merits of proposed TENG textiles for clothing uses suggest their great potentials for viable applications in wearable electronics or smart textiles in the near future.

How to cite this publication

Aifang Yu, Xiong Pu, Rong‐Mei Wen, Mengmeng Liu, Tao Zhou, Ke Zhang, Yang Zhang, Junyi Zhai, Weiguo Hu, Zhong Lin Wang (2017). Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. , 11(12), DOI: https://doi.org/10.1021/acsnano.7b07534.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.7b07534

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access