0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGlobal warming has begun to have a major impact on the species composition and functioning of plant and soil communities. However, long‐term community and ecosystem responses to increased temperature are still poorly understood. In this study, we used a well‐established elevational gradient in northern Sweden to elucidate how plant, microbial and nematode communities shift with elevation and associated changes in temperature in three highly contrasting vegetation types (i.e. heath, meadow and Salix vegetation). We found that responses of both the abundance and composition of microbial and nematode communities to elevation differed greatly among the vegetation types. Within vegetation types, changes with elevation of plant, microbial and nematode communities were mostly linked at fine levels of taxonomic resolution, but this pattern disappeared when coarser functional group levels were considered. Further, nematode communities shifted towards more conservative nutrient cycling strategies with increasing elevation in heath and meadow vegetation. Conversely, in Salix vegetation microbial communities with conservative strategies were most pronounced at the mid‐elevation. These results provide limited support for increasing conservative nutrient cycling strategies at higher elevation (i.e. with a harsher climate). Our findings indicate that climate‐induced changes in plant community composition may greatly modify or counteract the impact of climate change on soil communities. Therefore, to better understand and predict ecosystem responses to climate change, it will be crucial to consider vegetation type and its specific interactions with soil communities.
G. F. Veen, Jonathan R. De Long, Paul Kardol, Maja K. Sundqvist, Basten L. Snoek, David A. Wardle (2017). Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 126(11), pp. 1586-1599, DOI: 10.1111/oik.04158.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Oikos
DOI
10.1111/oik.04158
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access