0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the transformation of lignocellulosic biomass into fuels and chemicals carboncarbon bond formations and rising hydrophobicity are highly desired. The ketonic decarboxylation fits these requirements perfectly as it converts carboxylic acids into ketones forming one carboncarbon bond and eliminates three oxygen atoms as carbon dioxide and water. This reaction is used, in a cascade process, together with a hydrogenation and dehydration catalyst to obtain hydrocarbons in the kerosene range from hexose-derived valeric acid. It is shown that zirconium oxide is a very selective and stable catalyst for this process and when combined with platinum supported on alumina, the oxygen content was reduced to almost zero. Furthermore, it is demonstrated that alumina is superior to active carbon, silica, or zirconium oxide as support for the hydrogenation/dehydration/hydrogenation sequence and a palladium-based catalyst deactivated more rapidly than the platinum catalyst. Hence, under optimized reaction conditions valeric acid is converted into n-nonane with 80% selectivity (together with a 10% of C10–C15 hydrocarbons) in the organic liquid phase upto a 100:1 feed to catalyst ratio [w/w]. The oxygen free hydrocarbon product mixture (85% yield) meets well with the boiling point range of kerosene as evidenced by a simulated distillation. In the gas phase, butane was detected together with mainly carbon dioxide.
Avelino Avelino, Borja Oliver‐Tomas, Michael Renz, Irina L. Simakova (2013). Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. Journal of Molecular Catalysis A Chemical, 388-389, pp. 116-122, DOI: 10.1016/j.molcata.2013.11.015.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Molecular Catalysis A Chemical
DOI
10.1016/j.molcata.2013.11.015
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access