RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type

0 Datasets

0 Files

English
2013
Journal of Molecular Catalysis A Chemical
Vol 388-389
DOI: 10.1016/j.molcata.2013.11.015

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Avelino Avelino
Avelino Avelino

Instituto de Tecnología Química

Verified
Avelino Avelino
Borja Oliver‐Tomas
Michael Renz
+1 more

Abstract

In the transformation of lignocellulosic biomass into fuels and chemicals carboncarbon bond formations and rising hydrophobicity are highly desired. The ketonic decarboxylation fits these requirements perfectly as it converts carboxylic acids into ketones forming one carboncarbon bond and eliminates three oxygen atoms as carbon dioxide and water. This reaction is used, in a cascade process, together with a hydrogenation and dehydration catalyst to obtain hydrocarbons in the kerosene range from hexose-derived valeric acid. It is shown that zirconium oxide is a very selective and stable catalyst for this process and when combined with platinum supported on alumina, the oxygen content was reduced to almost zero. Furthermore, it is demonstrated that alumina is superior to active carbon, silica, or zirconium oxide as support for the hydrogenation/dehydration/hydrogenation sequence and a palladium-based catalyst deactivated more rapidly than the platinum catalyst. Hence, under optimized reaction conditions valeric acid is converted into n-nonane with 80% selectivity (together with a 10% of C10–C15 hydrocarbons) in the organic liquid phase upto a 100:1 feed to catalyst ratio [w/w]. The oxygen free hydrocarbon product mixture (85% yield) meets well with the boiling point range of kerosene as evidenced by a simulated distillation. In the gas phase, butane was detected together with mainly carbon dioxide.

How to cite this publication

Avelino Avelino, Borja Oliver‐Tomas, Michael Renz, Irina L. Simakova (2013). Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. Journal of Molecular Catalysis A Chemical, 388-389, pp. 116-122, DOI: 10.1016/j.molcata.2013.11.015.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Journal of Molecular Catalysis A Chemical

DOI

10.1016/j.molcata.2013.11.015

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access